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ABSTRACT 

The linear search problem concerns a search on the real line for a point 
selected at random according to a given probability distribution. The search 
begins at zero and is made by a continuous motion with constant speed, first in 
one direction and then the other. The problem is to determine when it 
is possible to devise a "best" search plan. In former papers the best plan has 
been selected according to the criterion of minimum expected path length. In 
this paper we consider a more general, nonlinear criterion for a "best" plan 
and show that the substantive requirements of the earlier results are not 
affected by these changes. 

Introduction 

In papers [1] and [2] the linear search problem is discussed and existence 

theorems for "be s t "  search plans are established. The criterion used in both 

papers is that the expected path  length required for finding the point is a minimum. 

I f  we imagine that searching becomes increasingly expensive in a nonlinear way 

with the length of the searching procedure, then this criterion is no longer valid. 

In this paper we consider a criterion which depends on the 0cth power of  the path  

length, 0~ > 1. We see that if  we sharpen the analytical techniques of  [1] and [2], 

then the results are unaltered in spite of  the more stringent criterion. 

Definitions and fundamental notions 

Let ~ > 1 be fixed arbitrarily for the remainder of  this paper. We will consider 

probabil i ty distributions F on the real line with a finite ~th absolute moment  

= M (F) = I tl de(T) < o0. I f  0 </3 < 0~, then Ma < oo since we always 

have Mp < 1 + M~. F is assumed to be normalized, continuous from the left in 

the left half-line, continuous from the right in the right half-line, and continuous at 

0, for reasons discussed in [1]. In that paper we define a standard search procedure 
X oo as a sequence x --- ( i)i = x with 
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�9 .._~__x 4 =<~ x 2 =<( 0_-~ x I ='( x 3 =< .-. 

o r  

�9 .. ~___X 3 ~ X  1 _~ 0 ~___ X2 ~-~ X4 ~_~ " " .  

Standard search plans are called strong if all the inequalities are strict. Let 3Eo 

designate the set of all standard search plans. In [2] we define a generalized search 
+oo procedure as a sequence x = {xi}i =-oo with 

" " ~ X  2 ~ X  0 ~ X _  2 ~ "'" - ~ 0 ~  "'" __~X- 1 ~__X 1 ~ X  3 _~ " " .  

Let ~ t  designate the set of all generalized search plans. It is clear that we may 

embed 3Eo in 3~1 in a natural way by associating x ~ Xo with 2 ~ X1 where 20 = 2_ 1 

= 2-2  . . . . .  0 and 22 = xt,  22 "~" X2, etc. 

Let t be a point between Xk and Xk+2 (including xk+2 but not Xk). Then the path 

length function will be given by 

Ik~  1 21X, l + l t  [ if xe3Eo, 

X ( x , t )  = ~ =~ 

l!=~t_g [x,I + Itl if x ~ t .  

If  t is not searched by a plan x (that is, if t does not lie between Xk and Xk+2 for 

any k), then we define X(x, t) = oo. This function describes the length of the 

search procedure x, where the direction is reversed at each xt, up to the point t. 

The search criterion is given by 

Let 

mo~ = mo~(F) = inf{X~(x): x e3Eo} 

ml, = m1~(F) = inf{X~(x): x e3E~}. 

It is remarked that mo~ and ml~ are finite whenever M~ is. This is because 

ml~ _-< mo~ _-< 9"M~ when x = {xi} = { ( -2 )  i } (cf. Beck [1]). Also, as in [-1], we 

define x + = x+(F) and x -  = x-(F) so that F(t) = 0 if t < x - ,  F(t) = 1 if t > x + 

and 0 < F ( t ) < l  if x - < t < x  +. Finally 

F - ( 0 ) - -  lim sup F(t) - F ( 0 ) ,  F+(0) = lim sup F(t) - F ( 0 )  
t-*O- t t~O + t 
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Our first objective is to generalize the content of [-1] in which are given necessary 

and sufficient conditions for the attainment of a minimal "cost" or "payoff" 

with a standard search procedure. The crucial tool in [1] is Lemma 3 which here 

is considerably sharpened as Lemma 6. Except where there are significant changes 

in technique, proofs are omitted. Instead, references are made to the appropriate 

parts of [1] or [2] where the necessary changes are easy exercises and left to the 

reader. 

Our intention now is to prove 

THEOREM 1. Let F be a probability distribution on the real line with M,(F) 

< oo. Then there is a standard search plan y with X,(y)  < X , ( x ) f o r  all search 

plans x ~Y,o i f  and only i f  at least one of  F+(O) and F-(O) is finite. 

The procedure is basically a compactness argument. Consider a sequence of 

search plans x ~") = {x~ ")} with X,(x  ~")) ~ mo,. Under the right conditions y = 

lim,_,| x~")exists and we prove that X,(y)  = mo,. We begin with three technical 

lemmas. 

LEMMA 2. I f  u=> O and q=> O, then 

~lu ~- ~ < (u + rl) ~ - u ~ < ~ ( u  + ~l) ~-1. 

PROOF. Since the derivative of u" is non-negative and increasing, the lemma is 

an immediate consequence of the mean-value theorem. Q.E.D. 

LEMMA 3. Let N be a fixed number, N > 1. Then there exists K o > 0 such 

that 

I.K( J t I - -NK) ' -XdF( t )  > -~M,_~ 

for  K < K o. 

PROOF. Choose K 2 such that 

>___ 

for K < K2. It follows from the Monotone Convergence theorem that there exists 

K1 < K2 such that 

f 2Ifltl "~K i t l ,_ idF( t )  N K ) ' - l d F ( t )  > 

for K -< Kl. Since 
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fltl~NKl(lt[- NK)~- I ]dF( t )~O as K ~ 0  

it is possible to choose Ko < K1 < K2 such that 

Itl_~Nr (1 t[ - NK)~-II aF(t) < -~M~_ 1 

for K < K o. In this case 

1 

1 
>- ~M~-x. Q.E.D. 

LEMMa 4. For 0 < t l < 1 and E any measurable set, 

( f~  ) (X(x, t) + rl) ~ - (X(x, t)) ~ dF(t) < ~ 2 ~- l rl 1 + (X(x, t))~dF(t) . 
oo 

PROOF. If  X(x, t) > 1, then 

(X(x, t) + ~)" <= (X(x, t) + n X(x, 0) ~ 

= ( X ( x ,  t))~(1 + ,1) �9 

<= ( X ( x , t ) ) ' ( 1  + c,2"-1,1). 

If X(x, 0 < 1, then 

(X(x,t)  + q)" ---- k=l ~ ( ~)  (x(x't))~-krlk 

< ( X ( x , t ) )  ~ + ,1 
k = l  , /s  

= (X(x,  t ) y  + (1 + ~/)" - 1 

< (X(x, t))" + or2 ~- it I. 
Now 

fe  (X(x, + tl) ~ - (X(x, t))=dF(t) t) 

< fx  ~2=-itldF(t) + f =2~-'tl(X(x't))=dF(t) 
(x,t)< 1 X(x,I) _>-- 1 

= ~2"- ' t  I (~x(~,t)<ldF(t)+ fx(~,t)~_ (X(x't))=dF(t))  

< o~2~-*rl 1 + X(x,t))~dF(t) . Q.E.D. 



VoI. 14, 1973 LINEAR SEARCH 173 

LEMg_A 5. I f  X-  = -- 0% X + = + 0% then we can f i nd  a sequence {bl} such 

that Vi, [x,[ < b~ < oo holds f o r  every search plan x e •o with X~(x) < 2 mo~. 

PROOF. See [1, Lemma 2]. 

LEMMA 6. I f  F- (O)  < D < o% then we can f ind  a K > O such that f o r  all 

sequences x ~ . o  with x2 < 0 < x l  and x 3 - x4 < K ,  we can f o r m  a sequence y by 

removing x1 and x2 f r o m  x which has the property that X~(y) < X~(x). 

PROOF. Here y~ = x~+2, Vi. Let a = 2(xl - x2) and b = 2(x3 - xl). 

Then 

Thus 

f ~  if O<_t<-xl, 
(X(x, t)) ~ - (X(y, t)) ~ = X ( x ,  t)) ~ - (X (x ,  t) + b) ~ if Xa =< t < 0, 

~'(X(x, t))  ~ ( X ( x , t ) -  a) ~ if t~.[X2,Xl~. 

X~(x) - X~(y) = (X(x ,  t)) ~ - ( X ( x ,  t) -b b)~dF(t) 
2 

+ f ( S ( x ,  t)) ~ - (X (x ,  t) - a)~dF(t). 
dt Ctx2,xd 

We shall show that if K is small enough, this difference is positive. Let K > 0 be 

chosen such that 

1 
1) K < ~  

2) K < 2~+2----- ~ 

3) (F(t) - F(0))/t < D, u  < t < 0 

fltl >~ 1 4) ] t I - a) ~- ldF(t)  > -~ M~_I 

5) F ( K )  - F ( 0 )  < - F(0) ) .  

For x 2 ~ t < 0 ,  X ( x , t ) < 2 x l - x 2 < a < 2 K < l  and b < 2 K < l .  From 

Lemma 2, it follows that 

( X ( x , t ) )  ~ - ( X ( x , t )  + b) ~ > - o tb(X(x , t )  + b) ~-1 > - ~ K 2  ~. 

Since - x2 < a [2, 
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f o (X(x,  t))" - (X(x,  t) + b)" dF(t) > ~t ~K(F(O) - F(x2) ) 2"- 
x 2  

> - ~ t2 , - IOKa.  

Also t r Ix2, xx] if and only if X(x,  t) > a, and X(x,  t) > It I, which together with 

Lemmas 2 and 3 implyt 

f t , tx,,x,~ X(x '  t) )" 

Finally 

- (X(x , t )  - a)~dF(t) 

> ~a f x  ( X ( x , t ) - a )  " - idF( t )  
(x,t)> 

1 
> go~aM,_t. 

(g -- 2 , -1  ) X,(x)  - X, (y)  > ao~ M~_ 1 D K 

> 0. Q.E.D. 

LEMMA 7. l f  F-(O) < o% ~ > 0 and x is any strong search plan, then we can 

f ind a search plan y E ~  o such that X~(y) < X~(x) + ~, Yl > 0 and Ya - Y4 > K, 

where K = K(F) is defined in the proof o f  Lemma 6. 

PROOF. Perhaps xl -> 0. I f  not, let z = {zl} be chosen with 0 < zl < x2 and 

zi = xi_ 1, Vi > 2. I f  zl is small enough, then Lemma 4 assures that X~(z) < X, (x)  

+ e. From here on the proof  is identical to Lemma 4 in [1]. Q.E.D. 

LEMMA 8. I f  X ~ ( x ) < 2 m o , ,  x l > 0 ,  X a - X 4 > = K ,  Xe~o,  and x - < a < 0  

< b < x +, then x i ~ [a, b] for  only n o values of  i at most, where no depends only 

on F, a, b and K. 

PROOF. See [1, Lemma 5]. 

THEOREM 9. Let F be our given distribution. I f  x -  = - o% x + = + oo, and 

P-(O) < oo, then there exists a search plan Y ~ o  with X~(y)= mov 

PROOF. The proof  is very similar to that of  Beck I l l .  First note that for any 

weak search plan x, we can find a strong search plan z with X~(z) < X,(x).  This is 

done exactly as in [1, Th. 6]. 

t If x2 = x-and xl = x +, then the two integrals in the computation would both be zero. 
and the last inequality would be false. Condition 5 on K assures that x l < x + since x l _----- x3 < x + 
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Let  x {~) = {x~ ")} be chosen for each n in such a way that  X~(x (~) ~ rno,. Let K 

be chosen as before and let a sequence {8.} be chosen with e. > 0, e. ~ 0 as n -~ o0. 

By Lemma 7 and the remark above, we can choose a strong search plan z {~) based 

on x (") with z] ") > 0, z3 (")-  ,-4 " {")>= ~,,,r" and X,(z  (")) < X,(x  (")) + en, Vn. Then 

X,(z {")) --. rno,, and for each i, {z~ ")} is a bounded  sequence. Using the diagonal 

method,  we can extract a subsequence {z C"~)} of  {z (") } with {z} "')} convergent 
for each i as j -~ 00. Without  any loss of  generality we assume X,(z (")) < 2rno, , 

Vn, and {z (")} = {z("J)}. Let  Yi = lim, z} "), Vi, and y = {y,}. Note  that  each search 

plan z (") satisfies Lemma 8. Since x -  = - 0o and x + = + 0% z~ ") lies in any 

fixed finite interval a round zero for at most  no values of  i for all n. Here no does 

not depend on n. It follows that  l Y~I ~ oo as k ~ oo. 

We wish to show that  X, ( y )=  too,. Unfortunately  it need not  be true that 

(X(z ~"), t))" ~ (X(y, t))" for  every t ~ R. We remedy this by introducing w} ") 

chosen so that  it has the same sign as z} ") and so that  [w} ") ] = max {Iz}")l, lyil}. 

Then w}")-~ y, as n ~ ,  Vi and I w~")l > lY'I" 

Choose any k > 0, 6 > 0, and let no be chosen so that  I z}") - Y,] < a, vn > no, 

Vi = 1, . . . ,  2k. Then  for every Yzk < t < Y2k-~ we have, f rom Lemma 2, 

(X(w {"), t)) ~ 

Thus 

where 

< (X(z {"), t) + 2k" 26)" 

+ ~2"+1k6 (X(~z "), t)) "-1 i f  X(z~"),t) > 4k6, <_ 
I 

[.(8k6)" otherwise. 

~i k- '( X (w {"), t ) )'dF( t ) 
~Y2k- ! 

=< Jrzk (X(zC")' t))a dF(t) 

o o  o o  

< 1 + X~(x (")) + e. 

_< 1 + 2mo~ + e .  

for n large enough,  say n > na. On  the other  hand,  as n ~ oo, we have 

(X(w ~), t)) ~ (X(y, t)) ~ for  every t e R. 
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Thus for n large enough, say n > n2, we have 

- (X(w (n), t)) 'dF(t)l  < 6. 

Hence, for n > max (no, nx, n2}, we have 

~y Y2k- 1 ( Y 2 ~ , -  1 

,k (X(y, t)) ~ dF(t) < (X(w ("), t))" dF(t) + 6 
~y2k 

( Y 2 k  - 1 

< (X(z  ("), t))~dF(t) + 6(1 + e. + 2mo~ ) + (8k6) ~ + 6. 
CY2k 

Since X~(z ("~) -* mo~ and e, - ,  0 as n ~ 0% we have for each 6 > 0, 

fy y2k-1 t))~dF(t) < + 26(1 + mo~ ) + (8k6) ~ 2~ ( X ( y ,  moot 

so that 

fy 
y2k- t 

ek (X(y,t))~dF(t) ~ mo~, Vk > O. 

Since ]Yk] -~ oo as k -* 0% we have X~(y) ~ mo~. On the other hand, y is a search 

plan so that X~(y)~ mo~. Q.E.D. 

COROLLARY 10. I f  in Theorem 9, the hypothesis F-(O) < co is replaced by 

F+(O) < 0% then the same conclusion follows. 

PROOF. It is clear by symmetry. 

THEOREM 11. Let F be our given distribution. I f  - ~ < x -  < O, x + = + co 

and F-(O) < 0% then there is a Y ~ . o  with X~(y )=  mo~. 

PROOF. See [-1, Th. 8]. 

COROLLARY 12. I f  in Theorem 11, the hypothesis F-(O) < oo is replaced by 

r+(0) < 0% then the same conclusion follows. 

PROOF. See [1, Corollary 9]. 

COROLLARY 13. I f  in Theorem 11 or Corollary 12, the hypothes is -  oo < x -  < O, 

x + = + oo is replaced by x -  = - ~ ,  0 < x + < + oo, then the conclusions 

still hold. 

PROOF. It is clear by symmetry. 

THEOREM 14. Let F be our given distribution. I f  - oo < x -  < 0 < x + < + oo 

and F-(O) < ~ ,  then we can f ind a search plan Y ~ o  with X~(y) = mo~. 
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PROOF. See [1, Th. 11]. 

COROLLARY 15. I f  in Theorem 14, the assumption F-(O)< oo is replaced by 

F+(0) < 0% then the same conclusion follows. 

PROOF. It is clear by symmetry. 

THEOREM 16. Let f be a probability distribution with f~_o~ltl~df(t)<oo. 

Suppose F - ( 0 ) =  F+(0) = oo. Let x~Xo be any search procedure with X~(x) 

< 2 mo~. Then there exists a search procedure y eXo such that X~(y) < X~(x). 

PROOF. Since F - ( 0 ) =  F + ( 0 ) =  oo ~ 0, x -  < 0 < x +. Thus any search procedure 

has at least two entries. Assume xl > 0; the other case is dual. Choose any Yx with 

x2 < Yl < 0, let Yi = xi_x, Vi_>_ 2, and define t /=  2 [y~[. Then for y~ __< t < 0, 

X(y , t )=  [t I and X(x , t )=  2 Ix1] + Itl. Otherwise, X(y , t )=  X(x,t) + t I. 

Observe that [tl ~ - (2] xl [ + It [)~ < - (21 xl l) ~. This and Lemma 4 yield 

f o X=(y)-X=(x) = Itl=-(2lx l+ltl)=dF(t) 
1 

+ [ (X(x, t) + - (X(x, t)y'de(t) 
.It r [yz.O] 

< (21xl - F(0)) 

+ ) 

provided that [yl [ < �89 Indeed, if y~ is chosen properly, this difference will be 
negative. In particular, let y~ be chosen so that x2 < Yl < 0 and 

oO 

> Q.E.D. 
Yl (2Ix,  1) = 

PROOF OF THEOREM 1. It follows directly from Theorems 9, 11, 14 and 16, 

and Corollaries 10, 12, 13 and 15. Q.E.D. 

Our second objective is to treat the content of [2] where it is shown that, for 

generalized search plans, there always exists a minimizing plan. In those cases 

where either F - ( 0 ) <  oo or F+(0)<oo, we will show that the minimizing gener- 

alized search plan is essentially the same as those obtained previously. Again, we 

follow closely the procedure in [2]. 

THEOREM 17. Let F be a probability distribution on the real line with 
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M~(F) < oo. Then there is a general ized  search plan y with X~(y) <= X~(x) f o r  

all general ized search plans x. 

LEMMA 18. Assume  x -  = - o% and x + = + oo. Then f o r  every 8 > O, there 

exists B(8)< oo such that f o r  all  x eY.1 with X~(x) < 2 ml~, we have that [ x j l  < e 

implies  I x j+ l l  <B(e).  

PROOF. See [2, Lemma 1]. 

LEMMA 19. I f  X -  < a <= b < x +, then there exists B(a ,b)  < oo such that f o r  

every x ~3E1 with X~(x) < 2 ml~, we have that x j  ~ [.a, b] implies  I xj+~ [ < B(a, b). 

PROOF. See [2, Lemma 2]. 

COLRLLARY 20. I f  X -  = -- o0, X + = + o0, then f o r  every ~ > O, there exists 

C(e) < oo such that f o r  every x e Y . x ,  with X~(x) < 2 m ~ ,  we have [x j l  < e implies 

[Xj+2] < C(8). 

PROOF. See [2, Corollary 3]. 

DEE[NInON 21. Let eo be any number such that 0<Co < x +, to be fixed for the 

remainder of this paper. For x~3~1, let no be chosen so that X~o+~ > Co, x~ =< Co, 

Vi __< no. Define a new generalized plan .~ by ~ = x~+,o. Note X (x) = X~(.~). 

LEMMA 22. Let  O < e < eo. Then there is an n = n(e,F)  > O such that f o r  

every x ~ 1 ,  with X~(x) < 2 ml~ , we have [xi I < e f o r  Vi < - n. 

PROOF. See [2, Lemma 5]. 

LEMMA 23. I f  X -  < a < 0 <_ b < x +, then there exists n = n ( a , b , F )  > 0 such 

that f o r  all x ~ 3El with X~(x)  < 2m1~, we have ~j ~ [.a, b"] f o r  Vj > n. 

PROOF. See [.2, Lemma 6]. 

THEOREM 24. I f  x -  = -- o% X + = + o %  

X~(y)  = ml~. 

then there is a Y ~ I  such that 

PROOF. Again the proof is similar to 12, Th. 7]. Let x (~) ~'x(n)~ +~~ t i J i = - o o  

be chosen from ~1 for each n in such a way that X~(x (n)~_, m~.Note  that X~(~ (n)) 

--, m ~  also, so that there will be no loss of  generality if we assume x (") = ~ (n) ,  

Vn. 

Now 
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0 = < . . .  = < x~)3 _ <_ x ~  = < eo, Vn, 

0_<..----I~'~1----I ~'o"'1 _-__ n(~o), v , ,  by Lemma 18, and 

I~';'1 < B(B(~o)), I~"'1 < B(8(B(~o))), etc. Vn 

so that  for  each i, {x~ ")} is a bounded  sequence, and thus contains a convergent 

subsequence. By the diagonal  process, we extract a subsequence Cx t '~ )~  o f  I. J j = l  

{x(")}~= 1 such that {x~"J)}~= 1 converges for  each i, and such that  X~(x (~)) < 2 m~, 

for  Yj. For  ease o f  notat ion,  since there is no loss of  generality, we assume 

{x (')} is actually the chosen subsequence. Fo r  each i, let y~ = l im,_ ,~xf f  ), Then 

Y-2 < Yo < Y2 < "'" < 0 < ... < Y- t  < Yl < "'" Fur thermore ,  f rom Lemma 

23, for  each - ~ < a < 0 < b < + co, we have y ~ ( a , b )  for  i > n(a,b,F) so 

that  [y, I - '  co as i ~ + ~ .  Also, by Lemma 22, l Y-, I ----~ if  i > n(e,F), so that 
y~ ~ 0 as i -~ - ~ .  Final/y,  i f  we set P = 1 - F(%), we have 

o 
X(x ~"~,t) ~ Z 2 Ix~"~[, vt > %, Vn. 

i = - - o 0  

Thus 

P (~ i l) fo ]~ 2 x} ") " < 
i =  --o0 

(X(x ("), t)) ~ dF(t) < 2 rn 1~, 

and 

o 

Z 
i = - - o o  

ix n f<2,,  Vn. 

It follows that  ~,~ ly, I < oo and ye3E1. To  show X~(y) = m~,  choose 6 > 0, 
-2k and k large enough so that  ~ =_ ~o] y,I < a. For  each n, define w(")e 3E1 by 

W~ n) = I 
x} ') i f  

( - 1 ) ' + l m a x ( l x } " ) l ,  lY, I) i f  

( - 1 )  '+ lmax(I x,(")[, I w,_2 ])if 

i <  - 2 k  

- 2 k < i < 2 k  + l 

i > 2 k + l .  

Then w~ ") = x~ ") for  all but  at  most  Sk values of  i, where s k = 4k + 1 + t l (Y2k , 

Y2k+ 1, F). Choose any e > 0 with Ske < 6. Since x~")~ y~, Vi and x~ ") = w~ ") except 

for  finitely many i, we know that  for all n large enough,  say n > n~, we have 

l wff ) - x~")l < e, Vi. Then  f rom Lemma 2, we have 
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(X(w ~"), t)) ~ < (X(x ("), t) + sk~)" 

(X(x ("), t))" + e2 "+ ~(X(x ("), t))'-x(SkO if X(x (n), t) > Ske , 
< 

L (2 She)" otherwise. 

Thus 

where 

X~(w (")) < X,(x  (")) + ~ 2" + a (she) (x(,), t))~- 1 dF(t) + (2 she )" 

v}")= f yi 
W~ n) 

Then, for all t, we have from Lemma 2, 

f ~(X(x("),t))'-X dF(t) <__ 1 + X, (x  (")) < 1 + 2ma,. 

. (n)~oo Note that w[n)~ Yi as n ~ oo, Vi, and define v (n) = {vi ]1=-co in ~ i  by 

if i < - 2k, 

Hence 

-2k 
(X(v ("), t)) ~ <= (X(w ("), t) + ~, 2 [Yi [)" 

i=--oo  

<= (X(w ("), t) + 26)" 

< (X(x ~"), t) + sk~ + 26) ~ 

<= (X(x  ("), t) + 36)" 

r(X(x '~, 

--< J" (66)" 

if i > = - 2 k .  

t)) ~ + ct 2" + 1 (36) (X(x ("), t)) "- ~ if X(x C") , t) ~ 36, 

otherwise. 

f) X~(v(n)) < X~(x(")) + ~ 2,+ x(36) X(x(n), t))~-l dF(t) + (66)" 

< X~(x Cn)) + ~U+1(36)(1 + 2ml , )  + (66) ~. 

Also, it is clear that X(v (n), t) -~ X(y,  t) uniformly for Yzk <= t <__ Yzk+ ~. Thus 
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fy Y2k+ I [I Yzk+~ 
~ (X(y, t)) dF(t)" = lira,..,| | X(v {"), t) dF(t) 

,,/y2k 

lim,_~ ~ sup X~(v ~")) 

lira,., o~ sup X,,(x ~")) + 9(,~) 

< ml~ + g(6) 

where 9(6) = ~ 2 ~+ t (36) (1 + 2 ml~) + (&5) ~ and 9(6) decreases monotonically to 

zero as 6 --* 0. Since this inequality holds for all k large enough, and i y,I as 

i --, + 0% we have X~(y) < mx~ + 9(6). Since 6 is arbitrary, we have X~(y) < nh~ 

which gives us X~(y )=  ml~. Q.E.D. 

Tt-IEOREM 25. I f  - -o0 < X -  < 0 ,  X + = + 0 %  then there exists yeY,~ such 

that X~(y) = ml~. 

PROOF. See [2, Th. 8]. 

COROLLARY 26. I f  x -  = - o %  0 < x + < + 0% then there exists y e ~ t  such 

that X~(y) = ml , .  

PROOF. It follows by symmetry. 

THEOREM 27. I f -  O0 < X-  < 0 < X + < + 00, then there exists a y e X t  such 

that X , (y )  = mt~. 

PROOF. See [2, Th. 10]. 

PROOF or THEOREM 17. It follows directly from Theorem 24, 25, 27 and 

Corollary 26. 
In Theorem 1 we showed that under certain conditions on the distribution F, 

there is a y e 3r such that X,(y)  = m o , .  We conclude by considering the relation- 

ship between this result and Theorem 17. 

LEMMA 28. mo,(F) = mid(F). 

PROOF. See [2, Lemrna 11] and use Lemma 2 of this paper. Q.E.D. 

TREOREM 29. Assume F+(0) < oo. Let y e X 1  be such that X , (y )  = m o ,  = ml , .  

Then there is a k with - 00 < k < + oo such that yi = O, Vi < k. 

PROOF. Assume not. Then y~ ~-0, V-oo  < i <  + 0o. Choose D > 0 with 

F+(0) < D < oo and let K > 0 be chosen satisfying 

F(t) - F(O). < D for 0 < t < K, 
i )  - -  t 
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ii) K < - -  
M ~ t -  1 

2~+1D, 

1 
iii) F ( K ) - F ( - K )  < ~ ,  

v) ft,t_K,r(l tl -4K)~- ldF( t )  > 1M~_I, 

where the possibility o f  the choice in (iv) is assured by Lemma 3. 

Since ~o= - |  l Y, I < ~ ,  we may choose an odd, negative number  k such that 

k + l  

y ~ - y ~ + l = l y ~ [ + l y ~ + l l < g  and ~ l y ,  

We shall show that  Yk = Yk-1 = 0. Define x s ~1 by 

rYi, Vi > k, 

xi = ~Yi -2 ,  Vi = < k. 

Let  a = 2(y k - Yk-,),  b = 2( I yk+l I - lyk-11). Then 

f (X(y, t)) ~ - (X(y, t) + b) ~ 

(X(y, t)) ~ - (X(x, t)) ~ = ~ ( X ( y ,  t)) ~ (X(y, t) - a)" 

~-0 

if Yk-2 = < t = < Yk, 

if t (~ [Yk- 1, Yk], 

otherwise. 

Since Yk-1 ~ - -  K, Yk <= K, we have f rom Lemmas 2 and 3 that  

f r  tyk-l,y~(X(Y' t)) ~ - (X(y,  t) - a)'dF(t) 

>= ~ aft (X(y, t) - a) ~-1 dF(t) 
r [yk- a ,yk ] 

>= ~ a f  ( X ( y , t ) -  a)~-l dF(t) 
t r  

af (Itl - 4K)  '~-I dF(t) 
r  

1 
> g o~aM~_~. 

Also by Lemma 2 and since, for Yk-2 < t < YR, X(y, t)  < _ _ , = _ ~  Yi < 1 and 

b < 1, we have 
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- (X(y, t) + b) ~ dF( t )  >__ - ~ b (X(y, t) + b) ~-  ~ dF( t )  
k -2  

>-_ - ctb 2 ~- l ( f ( y k )  -- F(yk_2)) .  

Therefore 

X~(y)  - -  X~(x )  > o~ [ � 8 8  M~_ 1 (Yk - -  Yk-1)  - 2~ (Yk+l -- YK-1)(F(Yk)  -- F(Yk-2))-I .  

We observe the following: 

a) Y k  - -  Yk-  t > Yk with equality only if Yk-  t = O. 

b) F(Yk) -- F ( Y k -  2) < F(Yk) -- F(O) < D yk with equality only if Yk = O. 

e) [yk+iI-[y~_tl<K. 
Now, by assumption on y, 

o > X~(y)- X~(x) 

>= ~ ( � 8 8  -- 2 ~ K D Y k )  

> - 0  

from (ii). It may be seen that equality cannot hold if either YR --  Yk-1 > Yk or 

F(Yk) --  F (yk -2 )  < DYk.  Thus equality holds only if Yk = Y k - t  = 0, Q.E.D. 
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